

●Distance function
defines what’s learned

●Most instance-based
schemes use Euclidean
distance:

 a(1) and a(2): two
instances with k
attributes

●Taking the square root is
not required when
comparing distances

●Other popular metric:
city-block metric

● Adds differences without
squaring them

2

●Different attributes are measured

on different scales  need to be

normalized:

 vi : the actual value of

attribute i

●Nominal attributes: distance

either 0 or 1

●Common policy for missing

values: assumed to be maximally

distant (given normalized

attributes)

3

𝑎𝑖

=
𝑣𝑖 − 𝑚𝑖𝑛𝑣𝑖

𝑚𝑎𝑥𝑣𝑖 − 𝑚𝑖𝑛𝑣𝑖

Simplest way of
finding nearest
neighbor: linear scan of
the data

Classification takes time
proportional to the product
of the number of instances
in training and test sets

Nearest-neighbor
search can be done
more efficiently using
appropriate data
structures

4

●Often very accurate

●Assumes all attributes are
equally important

● Remedy: attribute selection
or weights

●Possible remedies
against noisy instances:

● Take a majority vote over
the k nearest neighbors

● Removing noisy instances
from dataset (difficult!)

●Statisticians have used k-
NN since early 1950s
●If n   and k/n  0, error
approaches minimum

5

●Instead of storing all training

instances, compress them into

regions

●Simple technique (Voting

Feature Intervals):

●Construct intervals for each attribute

●Discretize numeric attributes

●Treat each value of a nominal

attribute as an “interval”

●Count number of times class occurs in

interval

●Prediction is generated by letting

intervals vote (those that contain the

test instance)

6

Temperature Humidity Wind Play

45 10 50 Yes

-20 0 30 Yes

65 50 0 No

7

1. Normalize the data:
new value = (original value – minimum value)/(max – min)

Temperature Humidity Wind Play

45 0.765 10 0.2 50 1 Yes

-20 0 0 0 30 0.6 Yes

65 1 50 1 0 0 No

8

1. Normalize the data:
new value = (original value – minimum value)/(max – min)

So for Temperature:
 new = (45 - -20)/(65 - -20) = 0.765
 new = (-20 - -20)/(65 - -20) = 0
 new = (65 - -20)/(65 - -20) = 1

Temperature Humidity Wind Play Distance

45 0.765 10 0.2 50 1 Yes

-20 0 0 0 30 0.6 Yes

65 1 50 1 0 0 No

9

1. Normalize the data in the new case (so it’s on the same scale as the instance data):
new value = (original value – minimum value)/(max – min)

Temperature Humidity Wind Play

35 0.647 40 0.8 10 0.2 ???

2. Calculate the distance of the new case from each of the old cases (we’re assuming
linear storage rather than some sort of tree storage here).

Temperature Humidity Wind Play Distance

45 0.765 10 0.2 50 1 Yes 1.007

-20 0 0 0 30 0.6 Yes 1.104

65 1 50 1 0 0 No 0.452

10

Temperature Humidity Wind Play

35 0.647 40 0.8 10 0.2 ???

2. Calculate the distance of the new case from each of the old.

𝑑 1 = (0.647 − 0.765)2+(0.8 − 0.2)2+(0.2 − 1)2= 1.007

𝑑 2 = (0.647 − 0)2+(0.8 − 0)2+(0.2 − 0.6)2= 1.104

𝑑 3 = (0.647 − 1)2+(0.8 − 1)2+(0.2 − 0)2= 0.452

Temperature Humidity Wind Play Distance

45 0.765 10 0.2 50 1 Yes 1.007

-20 0 0 0 30 0.6 Yes 1.104

65 1 50 1 0 0 No 0.452

11

Temperature Humidity Wind Play

35 0.647 40 0.8 10 0.2 ???

3. Determine the nearest neighbor (the smallest distance).
 We can see that our current case is closest to the third example so we
 would use that prediction for play – that is, we would predict
 Play = No.

●Practical problems of 1-NN scheme:
●Slow (but: fast tree-based approaches exist)

●Remedy: remove irrelevant data

●Noise (but: k -NN copes quite well with noise)

●Remedy: remove noisy instances

●All attributes deemed equally important

●Remedy: weight attributes (or simply select)

●Doesn’t perform explicit generalization

●Remedy: rule-based NN approach

12

●Only those instances involved in a decision

need to be stored

●Noisy instances should be filtered out

●Idea: only use prototypical examples

13

●IB2: save memory, speed up classification
●Work incrementally

●Only incorporate misclassified instances

●Problem: noisy data gets incorporated

●IB3: deal with noise
●Discard instances that don’t perform well

14

●IB4: weight each attribute (weights can be class-
specific)

●Weighted Euclidean distance:

●Update weights based on nearest neighbor
●Class correct: increase weight

●Class incorrect: decrease weight

●Amount of change for i th attribute depends on
|xi- yi|

15

𝑤1
2(𝑥1 − 𝑦1)2+ ⋯ + 𝑤𝑛

2(𝑥𝑛 − 𝑦𝑛)2

●Generalize instances into hyperrectangles
●Online: incrementally modify rectangles

●Offline version: seek small set of rectangles that cover the

instances

●Important design decisions:
●Allow overlapping rectangles?

●Requires conflict resolution

●Allow nested rectangles?

●Dealing with uncovered instances?

16

●Clustering techniques apply when

there is no class to be predicted

●Aim: divide instances into “natural”

groups

●Clusters can be:

●Disjoint vs. overlapping

●Deterministic vs. probabilistic

●Flat vs. hierarchical

●We'll look at a classic clustering

algorithm called k-means

●k-means clusters are disjoint and

deterministic

18

●Algorithm minimizes distance to cluster centers

●Result can vary significantly

●based on initial choice of seeds

●Can get trapped in local minimum

●Example:

●To increase chance of finding global optimum: restart

with different random seeds

●Can be applied recursively with k = 2

19

instances

initial
cluster
centers

0

5

10

15

20

0 5 10 15 20

y
x

20

Data Cluster
1

Cluster
2

X Y X=5 Y=10 X=15 Y=15

19 1

13 12

9 7

6 15

18 2

4 1

21

𝑑 1 = (19 − 5)2+(1 − 10)2= 16.64

Data Cluster
1

Cluster
2

X Y X=5 Y=10 X=15 Y=15

19 1 16.64 14.56

13 12 8.25 3.61

9 7 5.00 10.00

6 15 5.10 9.00

18 2 15.26 13.34

4 1 9.06 17.80

𝑑 1 = (19 − 15)2+(1 − 15)2= 14.56

22

Data Cluster
1

Cluster
2

X Y X=5 Y=10 X=15 Y=15

19 1 16.64 14.56

13 12 8.25 3.61

9 7 5.00 10.00

6 15 5.10 9.00

18 2 15.26 13.34

4 1 9.06 17.80

Now we assign each instance to the cluster which it’s closest to (highlighted
In the table.)

23

Data Cluster
1

Cluster
2

X Y X=5 Y=10 X=15 Y=15

19 1 16.64 14.56

13 12 8.25 3.61

9 7 5.00 10.00

6 15 5.10 9.00

18 2 15.26 13.34

4 1 9.06 17.80

Then we adjust the cluster centers to be the average of all of the instances
assigned to them. (This is called the centroid.)
 Cluster Center 1, X = (9+6+4)/3 = 6.33; Y = (7+15+1)/3 = 7.67
 Cluster Center 2, X = (19+13+18)/3 = 16.67; Y = (1+12+2)/3 = 5

24

0

5

10

15

20

0 5 10 15 20

y

x

We place the new cluster centers and do the entire process again. We repeat
this until no changes happen on an iteration.

●How to choose k in k-means? Possibilities:
●Choose k that minimizes cross-validated squared

distance to cluster centers

●Use penalized squared distance on the training data

(eg. using an MDL criterion)

●Apply k-means recursively with k = 2 and use stopping

criterion (eg. based on MDL)

●Seeds for subclusters can be chosen by seeding along

direction of greatest variance in cluster (one standard deviation

away in each direction from cluster center of parent cluster)

25

● Recursively splitting
clusters produces a
hierarchy that can be
represented as a
dendogram

 Could also be represented
as a Venn diagram of sets
and subsets (without
intersections)

 Height of each node in the
dendogram can be made
proportional to the
dissimilarity between its
children

26

● Bottom-up approach

● Simple algorithm

 Requires a
distance/similarity measure

 Start by considering each
instance to be a cluster

 Find the two closest
clusters and merge them

 Continue merging until
only one cluster is left

 The record of mergings
forms a hierarchical
clustering structure – a
binary dendogram

27

● Single-linkage

 Minimum distance between the
two clusters

 Distance between the clusters
closest two members

 Can be sensitive to outliers

● Complete-linkage

 Maximum distance between
the two clusters

 Two clusters are considered
close only if all instances in
their union are relatively similar

 Also sensitive to outliers

 Seeks compact clusters

28

● Compromise between the

extremes of minimum and

maximum distance

● Represent clusters by their

centroid, and use distance

between centroids –

centroid linkage

● Calculate average

distance between each

pair of members of the two

clusters – average-linkage

29

● 50 examples of different creatures from zoo data

30 Dendogram Polar Plot

●Heuristic approach (COBWEB/CLASSIT)

●Form a hierarchy of clusters incrementally

●Start:
●Tree consists of empty root node

●Then:
●Add instances one by one

●Update tree appropriately at each stage

●To update, find the right leaf for an instance

●May involve restructuring the tree

●Base update decisions on category utility
31

32

●Probabilistic perspective 
seek the most likely clusters given the data

●Also: instance belongs to a particular cluster with

a certain probability

33

34

A 51
A 43
B 62
B 64
A 45
A 42
A 46
A 45
A 45

B 62
A 47
A 52
B 64
A 51
B 65
A 48
A 49
A 46

B 64
A 51
A 52
B 62
A 49
A 48
B 62
A 43
A 40

A 48
B 64
A 51
B 63
A 43
B 65
B 66
B 65
A 46

A 39
B 62
B 64
A 52
B 63
B 64
A 48
B 64
A 48

A 51
A 48
B 64
A 42
A 48
A 41

Data

Model

A=50, A =5, pA=0.6 B=65, B =2, pB=0.4

●Assume:
●We know there are k clusters

●Learn the clusters 
●Determine their parameters

●i.e. means and standard deviations

●Performance criterion:
●Probability of training data given the clusters

●EM algorithm
●Finds a local maximum of the likelihood

35

●More then two distributions: easy

●Several attributes: easy—assuming independence

●Correlated attributes: difficult
●Joint model: bivariate normal distribution

with a (symmetric) covariance matrix

●n attributes: need to estimate n + n (n+1)/2 parameters

36

● Simplicity-first
methodology can be
applied to multi-instance
learning with surprisingly
good results

● Two simple approaches,
both using standard
single-instance learners:

 Manipulate the input to
learning

 Manipulate the output of
learning

37

● Convert multi-instance problem into single-

instance one

 Summarize the instances in a bag by computing

mean, mode, minimum and maximum as new

attributes

 To classify a new bag the same process is used

38

● Learn a single-instance classifier
directly from the original
instances in each bag

● To classify a new bag:

 Decide on cluster for each
instance in the bag

 Aggregate the cluster
predictions to produce a
prediction for the bag as a
whole

 One approach: treat
predictions as votes for the
various clusters

 A problem: bags can contain
differing numbers of instances
 give each instance a weight
inversely proportional to the
bag's size

39

●Can interpret clusters by using supervised

learning
●Post-processing step

●Decrease dependence between attributes?
●Pre-processing step

●E.g. use principal component analysis

40

