Learning from
Observations —Instance
Based Learning

- Distance function defines what's learned
- •Most instance-based schemes use Euclidean distance:

Instance-Based Learning

$$\sqrt{(a_1^{(1)}-a_1^{(2)})^2+(a_2^{(1)}-a_2^{(2)})^2+...(a_k^{(1)}-a_k^{(2)})^2}$$

 $\overline{\mathbf{a}^{(1)}}$ and $\overline{\mathbf{a}^{(2)}}$: two instances with k attributes

- •Taking the square root is not required when comparing distances
- Other popular metric: city-block metric
 - Adds differences without squaring them

•Different attributes are measured on different scales ⇒ need to be normalized:

$$a_i \\ = \frac{v_i - minv_i}{maxv_i - minv_i}$$
 v_i : the actual value of attribute i

- Nominal attributes: distance either 0 or 1
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)

Normalization and Other Issues

- Simplest way of finding nearest neighbor: linear scan of the data
 - Classification takes time proportional to the product of the number of instances in training and test sets
- Nearest-neighbor search can be done more efficiently using appropriate data structures

Finding Nearest Neighbors Efficiently

- Often very accurate
- Assumes all attributes are equally important
 - Remedy: attribute selection or weights
- Possible remedies against noisy instances:
 - Take a majority vote over the k nearest neighbors
 - Removing noisy instances from dataset (difficult!)
- Statisticians have used *k*-NN since early 1950s
- If $n \to \infty$ and $k/n \to 0$, error approaches minimum

Discussion of Nearest-Neighbor Learning

- Instead of storing all training instances, compress them into regions
- Simple technique (Voting Feature Intervals):

- More Discussion
- Construct intervals for each attribute
- Discretize numeric attributes
- •Treat each value of a nominal attribute as an "interval"
 - Count number of times class occurs in interval
 - •Prediction is generated by letting intervals vote (those that contain the test instance)

Temperature		Humidity		Wind		Play
45		10		50		Yes
-20		0		30		Yes
65		50		0		No

1. Normalize the data:

new value = (original value – minimum value)/(max – min)

Temperature		Humidity		Wind		Play
45	0.765	10	0.2	50	1	Yes
-20	0	0	0	30	0.6	Yes
65	1	50	1	0	0	No

1. Normalize the data:

new value = (original value – minimum value)/(max – min)

So for Temperature:

$$new = (45 - -20)/(65 - -20) = 0.765$$

$$new = (-20 - -20)/(65 - -20) = 0$$

$$new = (65 - -20)/(65 - -20) = 1$$

Temperature		Humidity		Wind		Play	Distance
45	0.765	10	0.2	50	1	Yes	
-20	0	0	0	30	0.6	Yes	
65	1	50	1	0	0	No	

Temperature		Humidity		Wind		Play
35	0.647	40	0.8	10	0.2	???

- Normalize the data in the new case (so it's on the same scale as the instance data):
 new value = (original value minimum value)/(max min)
- 2. Calculate the distance of the new case from each of the old cases (we're assuming linear storage rather than some sort of tree storage here).

Temperature		Humidity		Wind		Play	Distance
45	0.765	10	0.2	50	1	Yes	1.007
-20	0	0	0	30	0.6	Yes	1.104
65	1	50	1	0	0	No	0.452

Temperature		Humidity		Wind		Play
35	0.647	40	0.8	10	0.2	???

2. Calculate the distance of the new case from each of the old.

$$d(1) = \sqrt{(0.647 - 0.765)^2 + (0.8 - 0.2)^2 + (0.2 - 1)^2} = 1.007$$

$$d(2) = \sqrt{(0.647 - 0)^2 + (0.8 - 0)^2 + (0.2 - 0.6)^2} = 1.104$$

$$d(3) = \sqrt{(0.647 - 1)^2 + (0.8 - 1)^2 + (0.2 - 0)^2} = 0.452$$

Temperature		Humidity		Wind		Play	Distance
45	0.765	10	0.2	50	1	Yes	1.007
-20	0	0	0	30	0.6	Yes	1.104
65	1	50	1	0	0	No	0.452

Temperature		Humidity		Wind		Play
35	0.647	40	0.8	10	0.2	???

Determine the nearest neighbor (the smallest distance).
 We can see that our current case is closest to the third example so we would use that prediction for play – that is, we would predict Play = No.

Instance-Based Learning

Practical problems of 1-NN scheme:

- Slow (but: fast tree-based approaches exist)
 - •Remedy: remove irrelevant data
- Noise (but: *k* -NN copes quite well with noise)
 - •Remedy: remove noisy instances
- •All attributes deemed equally important
 - •Remedy: weight attributes (or simply select)
- Doesn't perform explicit generalization
 - Remedy: rule-based NN approach

Learning Prototypes

- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use *prototypical* examples

Speed Up, Combat Noise

.IB2: save memory, speed up classification

- .Work incrementally
- Only incorporate misclassified instances
- Problem: noisy data gets incorporated

JB3: deal with noise

Discard instances that don't perform well

Weight Attributes

- •IB4: weight each attribute (weights can be classspecific)
- •Weighted Euclidean distance:

$$\sqrt{w_1^2(x_1-y_1)^2+\cdots+w_n^2(x_n-y_n)^2}$$

- Update weights based on nearest neighbor
 - Class correct: increase weight
 - Class incorrect: decrease weight
 - •Amount of change for i th attribute depends on $|x_i y_i|$

Generalized Exemplars

Generalize instances into hyperrectangles

- Online: incrementally modify rectangles
- •Offline version: seek small set of rectangles that cover the instances

Important design decisions:

- •Allow overlapping rectangles?
 - Requires conflict resolution
- •Allow nested rectangles?
- •Dealing with uncovered instances?

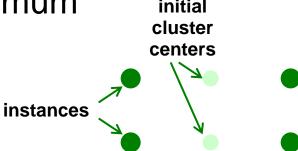
Learning from Observations – Clustering

- Clustering techniques apply when there is no class to be predicted
- •Aim: divide instances into "natural" groups
- .Clusters can be:
 - Disjoint vs. overlapping
 - Deterministic vs. probabilistic
 - •Flat vs. hierarchical
- We'll look at a classic clustering algorithm called *k-means*
 - k-means clusters are disjoint and deterministic

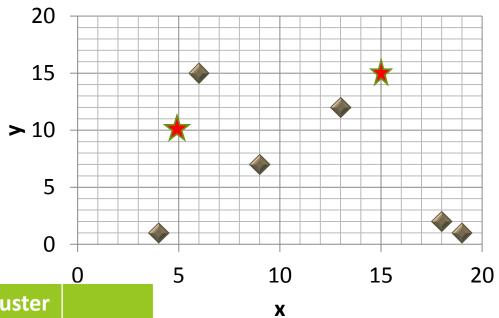
Clustering

Discussion

- Algorithm minimizes distance to cluster centers
- Result can vary significantly based on initial choice of seeds
- •Can get trapped in local minimum
 •Example:



- .To increase chance of finding global optimum: restart with different random seeds
- . Can be applied recursively with k = 2



Data		Cluster 1		Cluster 2	
X	Υ	X=5	Y=10	X=15	Y=15
19	1				
13	12				
9	7				
6	15				
18	2				
4	1				

$$\sqrt{(a_1^{(1)}-a_1^{(2)})^2+(a_2^{(1)}-a_2^{(2)})^2+\dots(a_k^{(1)}-a_k^{(2)})^2}$$

Data		Cluster 1		Cluster 2	
X	Υ	X=5	Y=10	X=15	Y=15
19	1	16.64		14.56	
13	12	8.25		3.61	
9	7	5.00		10.00	
6	15	5.10		9.00	
18	2	15.26		13.34	
4	1	9.06		17.80	

$$d(1) = \sqrt{(19-5)^2 + (1-10)^2} = 16.64$$

$$d(1) = \sqrt{(19 - 15)^2 + (1 - 15)^2} = 14.56$$

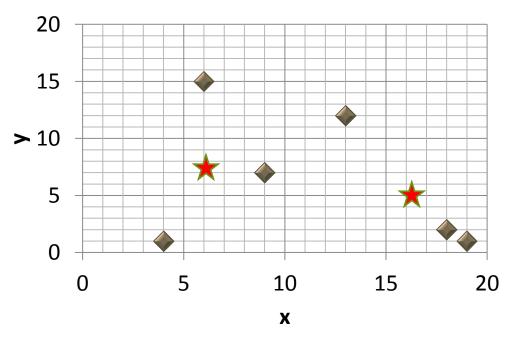
Data		Cluster 1		Cluster 2		
X	Υ	X=5	Y=10	X=15	Y=15	
19	1	16.64		14.56		
13	12	8.25		3.61		
9	7	5.00		10.00		
6	15	5.10		9.00		
18	2	15.26		13.34		
4	1	9.06		17.80		

Now we assign each instance to the cluster which it's closest to (highlighted In the table.)

Data		Cluster 1		Cluster 2		
X	Υ	X=5	Y=10	X=15	Y=15	
19	1	16.64		14.56		
13	12	8.25		3.61		
9	7	5.00		10.00		
6	15	5.10		9.00		
18	2	15.26		13.34		
4	1	9.06	9.06			

Then we adjust the cluster centers to be the average of all of the instances assigned to them. (This is called the centroid.)

Cluster Center 1,
$$X = (9+6+4)/3 = 6.33$$
; $Y = (7+15+1)/3 = 7.67$
Cluster Center 2, $X = (19+13+18)/3 = 16.67$; $Y = (1+12+2)/3 = 5$



We place the new cluster centers and do the entire process again. We repeat this until no changes happen on an iteration.

Clustering: How Many Clusters?

.How to choose *k* in *k*-means? Possibilities:

- •Choose *k* that minimizes cross-validated squared distance to cluster centers
- •Use penalized squared distance on the training data (eg. using an MDL criterion)
- •Apply k-means recursively with k = 2 and use stopping criterion (eg. based on MDL)
 - Seeds for subclusters can be chosen by seeding along direction of greatest variance in cluster (one standard deviation away in each direction from cluster center of parent cluster)

- Recursively splitting clusters produces a hierarchy that can be represented as a dendogram
 - Could also be represented as a Venn diagram of sets and subsets (without intersections)
 - Height of each node in the dendogram can be made proportional to the dissimilarity between its children

Hierarchical Clustering

- Bottom-up approach
- Simple algorithm
 - Requires a distance/similarity measure
 - Start by considering each instance to be a cluster
 - Find the two closest clusters and merge them
 - Continue merging until only one cluster is left
 - The record of mergings forms a hierarchical clustering structure – a binary dendogram

Agglomerative Clustering

- Single-linkage
 - Minimum distance between the two clusters
 - Distance between the clusters closest two members
 - Can be sensitive to outliers
- Complete-linkage
 - Maximum distance between the two clusters
 - Two clusters are considered close only if all instances in their union are relatively similar
 - Also sensitive to outliers
 - Seeks compact clusters

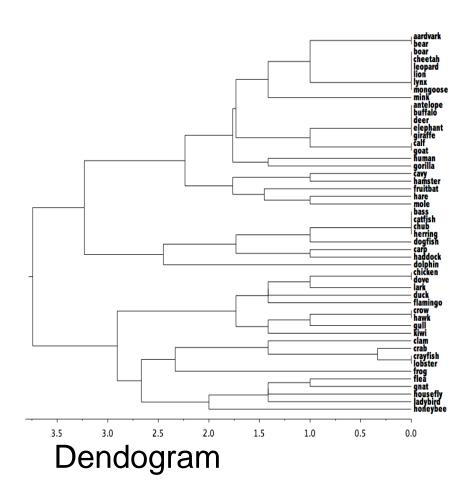
Distance Measures

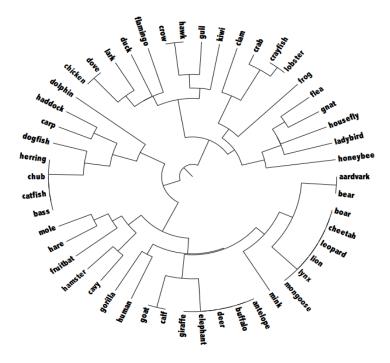
- Compromise between the extremes of minimum and maximum distance
- Represent clusters by their centroid, and use distance between centroids – centroid linkage
- Calculate average
 distance between each
 pair of members of the two
 clusters average-linkage

Distance Measures (cont.)

Example Hierarchical Clustering

50 examples of different creatures from zoo data





Polar Plot

Incremental Clustering

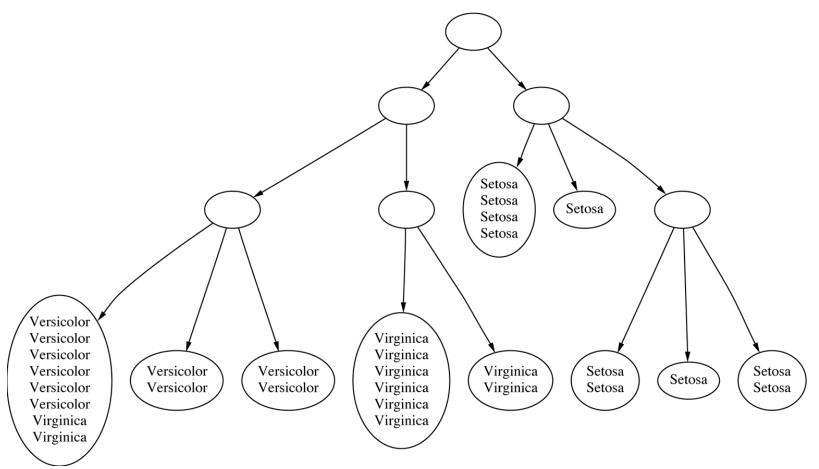
- .Heuristic approach (COBWEB/CLASSIT)
- Form a hierarchy of clusters incrementally

.Start:

•Tree consists of empty root node

.Then:

- Add instances one by one
- Update tree appropriately at each stage
- •To update, find the right leaf for an instance
- May involve restructuring the tree
- Base update decisions on category utility



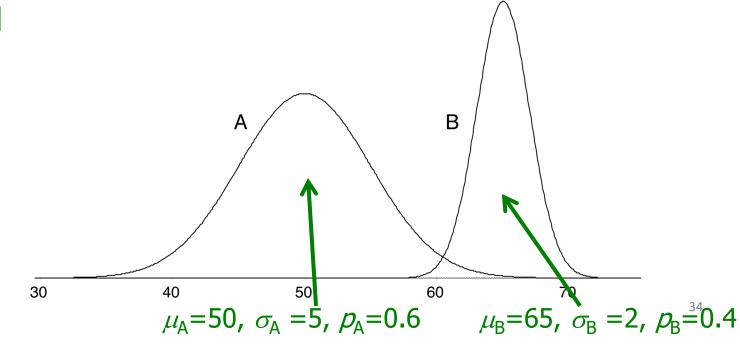
Probability-Based Clustering

Probabilistic perspective ⇒
seek the *most likely* clusters given the data
Also: instance belongs to a particular cluster *with* a certain probability

Two-Class Mixture Model

A	51	В	62	В	64	Α	48	A	39	A	51	
A	43	Α	47	Α	51	В	64	В	62	Α	48	
В	62	A	52	A	52	Α	51	В	64	В	64	
В	64	В	64	В	62	В	63	A	52	Α	42	
A	45	Α	51	Α	49	A	43	В	63	Α	48	
A	42	В	65	Α	48	В	65	В	64	Α	41	
A	46	A	48	В	62	В	66	A	48			
A	45	A	49	Α	43	В	65	В	64			
A	45	A	46	A	40	Α	46	A	48			

Model



.Assume:

.We know there are k clusters

.Learn the clusters ⇒

- .Determine their parameters
- i.e. means and standard deviations

.Performance criterion:

Probability of training data given the clusters

.EM algorithm

•Finds a local maximum of the likelihood

Learning the Clusters

Extending the Mixture Model

- .More then two distributions: easy
- Several attributes: easy—assuming independence
- .Correlated attributes: difficult
 - Joint model: bivariate normal distribution with a (symmetric) covariance matrix
 - •*n* attributes: need to estimate n + n (n+1)/2 parameters

- Simplicity-first
 methodology can be
 applied to multi-instance
 learning with surprisingly
 good results
- Two simple approaches, both using standard single-instance learners:

Multi-Instance Learning

- Manipulate the input to learning
- Manipulate the output of learning

Aggregating the Input

- Convert multi-instance problem into singleinstance one
 - Summarize the instances in a bag by computing mean, mode, minimum and maximum as new attributes
 - To classify a new bag the same process is used

- Learn a single-instance classifier directly from the original instances in each bag
- . To classify a new bag:
 - Decide on cluster for each instance in the bag
 - Aggregate the cluster predictions to produce a prediction for the bag as a whole
 - One approach: treat predictions as votes for the various clusters
 - A problem: bags can contain differing numbers of instances
 → give each instance a weight inversely proportional to the bag's size

Aggregating the Output

Discussion

- Can interpret clusters by using supervised learning
 - Post-processing step
- .Decrease dependence between attributes?
 - •Pre-processing step
 - •E.g. use principal component analysis