


●Distance function 
defines what’s learned 

●Most instance-based 
schemes use Euclidean 
distance: 
 

 
 
 a(1) and a(2): two 
instances with k 
attributes 

●Taking the square root is 
not required when 
comparing distances 

●Other popular metric: 
city-block metric 

● Adds differences without 
squaring them 
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●Different attributes are measured 

on different scales   need to be 

normalized: 

 

 

 vi : the actual value of 

attribute i 

●Nominal attributes: distance 

either 0 or 1 

●Common policy for missing 

values: assumed to be maximally 

distant (given normalized 

attributes) 
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𝑎𝑖

=
𝑣𝑖 − 𝑚𝑖𝑛𝑣𝑖

𝑚𝑎𝑥𝑣𝑖 − 𝑚𝑖𝑛𝑣𝑖
 



Simplest way of 
finding nearest 
neighbor: linear scan of 
the data 

Classification takes time 
proportional to the product 
of the number of instances 
in training and test sets 

Nearest-neighbor 
search can be done 
more efficiently using 
appropriate data 
structures 
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●Often very accurate 

●Assumes all attributes are 
equally important 

● Remedy: attribute selection 
or weights 

●Possible remedies 
against noisy instances: 

● Take a majority vote over 
the k nearest neighbors 

● Removing noisy instances 
from dataset (difficult!) 

●Statisticians have used k-
NN since early 1950s 
●If n   and k/n  0, error 
approaches minimum 
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●Instead of storing all training 

instances, compress them into 

regions 

●Simple technique (Voting 

Feature Intervals): 

●Construct intervals for each attribute 

●Discretize numeric attributes 

●Treat each value of a nominal 

attribute as an “interval” 

●Count number of times class occurs in 

interval 

●Prediction is generated by letting 

intervals vote (those that contain the 

test instance) 
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Temperature Humidity Wind Play 

45 10 50 Yes 

-20 0 30 Yes 

65 50 0 No 
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1. Normalize the data: 
new value = (original value – minimum value)/(max – min) 



Temperature Humidity Wind Play 

45 0.765 10 0.2 50 1 Yes 

-20 0 0 0 30 0.6 Yes 

65 1 50 1 0 0 No 
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1. Normalize the data: 
new value = (original value – minimum value)/(max – min) 
 
So for Temperature: 
 new = (45 - -20)/(65 - -20) = 0.765 
 new = (-20 - -20)/(65 - -20) = 0 
 new = (65 - -20)/(65 - -20) = 1 



Temperature Humidity Wind Play Distance 

45 0.765 10 0.2 50 1 Yes 

-20 0 0 0 30 0.6 Yes 

65 1 50 1 0 0 No 
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1. Normalize the data in the new case (so it’s on the same scale as the instance data): 
new value = (original value – minimum value)/(max – min) 

Temperature Humidity Wind Play 

35 0.647 40 0.8 10 0.2 ??? 

2. Calculate the distance of the new case from each of the old cases (we’re assuming 
linear storage rather than some sort of tree storage here). 



Temperature Humidity Wind Play Distance 

45 0.765 10 0.2 50 1 Yes 1.007 

-20 0 0 0 30 0.6 Yes 1.104 

65 1 50 1 0 0 No 0.452 
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Temperature Humidity Wind Play 

35 0.647 40 0.8 10 0.2 ??? 

2. Calculate the distance of the new case from each of the old. 

𝑑 1 =  (0.647 − 0.765)2+(0.8 − 0.2)2+(0.2 − 1)2= 1.007 

𝑑 2 =  (0.647 − 0)2+(0.8 − 0)2+(0.2 − 0.6)2= 1.104 

𝑑 3 =  (0.647 − 1)2+(0.8 − 1)2+(0.2 − 0)2= 0.452 



Temperature Humidity Wind Play Distance 

45 0.765 10 0.2 50 1 Yes 1.007 

-20 0 0 0 30 0.6 Yes 1.104 

65 1 50 1 0 0 No 0.452 
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Temperature Humidity Wind Play 

35 0.647 40 0.8 10 0.2 ??? 

3. Determine the nearest neighbor (the smallest distance). 
 We can see that our current case is closest to the third example so we 
 would use that prediction for play – that is, we would predict 
 Play = No. 



●Practical problems of 1-NN scheme: 
●Slow (but: fast tree-based approaches exist) 

●Remedy: remove irrelevant data 

●Noise (but: k -NN copes quite well with noise) 

●Remedy: remove noisy instances 

●All attributes deemed equally important 

●Remedy: weight attributes (or simply select) 

●Doesn’t perform explicit generalization 

●Remedy: rule-based NN approach 
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●Only those instances involved in a decision 

need to be stored 

●Noisy instances should be filtered out 

●Idea: only use prototypical examples 
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●IB2: save memory, speed up classification 
●Work incrementally 

●Only incorporate misclassified instances 

●Problem: noisy data gets incorporated 

●IB3: deal with noise 
●Discard instances that don’t perform well 
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●IB4: weight each attribute (weights can be class-
specific) 

●Weighted Euclidean distance: 
 
 

●Update weights based on nearest neighbor 
●Class correct: increase weight 

●Class incorrect: decrease weight 

●Amount of change for i th attribute depends on  
|xi- yi| 
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𝑤1
2(𝑥1 − 𝑦1)2+ ⋯ + 𝑤𝑛

2(𝑥𝑛 − 𝑦𝑛)2 



●Generalize instances into hyperrectangles 
●Online: incrementally modify rectangles 

●Offline version: seek small set of rectangles that cover the 

instances 

●Important design decisions: 
●Allow overlapping rectangles? 

●Requires conflict resolution 

●Allow nested rectangles? 

●Dealing with uncovered instances? 
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●Clustering techniques apply when 

there is no class to be predicted 

●Aim: divide instances into “natural” 

groups 

●Clusters can be: 

●Disjoint vs. overlapping 

●Deterministic vs. probabilistic 

●Flat vs. hierarchical 

●We'll look at a classic clustering 

algorithm called k-means 

●k-means clusters are disjoint and 

deterministic 
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●Algorithm minimizes distance to cluster centers 

●Result can vary significantly 

●based on initial choice of seeds 

●Can get trapped in local minimum 

●Example: 

 

 

●To increase chance of finding global optimum: restart 

with different random seeds 

●Can be applied recursively with k = 2 

19 
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Data Cluster 
1 

Cluster 
2 

X Y X=5 Y=10 X=15 Y=15 

19 1 

13 12 

9 7 

6 15 

18 2 

4 1 
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𝑑 1 =  (19 − 5)2+(1 − 10)2= 16.64 

Data Cluster 
1 

Cluster 
2 

X Y X=5 Y=10 X=15 Y=15 

19 1 16.64 14.56 

13 12 8.25 3.61 

9 7 5.00 10.00 

6 15 5.10 9.00 

18 2 15.26 13.34 

4 1 9.06 17.80 

𝑑 1 =  (19 − 15)2+(1 − 15)2= 14.56 
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Data Cluster 
1 

Cluster 
2 

X Y X=5 Y=10 X=15 Y=15 

19 1 16.64 14.56 

13 12 8.25 3.61 

9 7 5.00 10.00 

6 15 5.10 9.00 

18 2 15.26 13.34 

4 1 9.06 17.80 

Now we assign each instance to the cluster which it’s closest to (highlighted 
In the table.) 
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Data Cluster 
1 

Cluster 
2 

X Y X=5 Y=10 X=15 Y=15 

19 1 16.64 14.56 

13 12 8.25 3.61 

9 7 5.00 10.00 

6 15 5.10 9.00 

18 2 15.26 13.34 

4 1 9.06 17.80 

Then we adjust the cluster centers to be the average of all of the instances 
assigned to them. (This is called the centroid.) 
 Cluster Center 1, X = (9+6+4)/3 = 6.33; Y = (7+15+1)/3 = 7.67 
 Cluster Center 2, X = (19+13+18)/3 = 16.67; Y = (1+12+2)/3 = 5 
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We place the new cluster centers and do the entire process again. We repeat  
this until no changes happen on an iteration. 



●How to choose k in k-means? Possibilities: 
●Choose k that minimizes cross-validated squared 

distance to cluster centers 

●Use penalized squared distance on the training data 

(eg. using an MDL criterion) 

●Apply k-means recursively with k = 2 and use stopping 

criterion (eg. based on MDL) 

●Seeds for subclusters can be chosen by seeding along 

direction of greatest variance in cluster (one standard deviation 

away in each direction from cluster center of parent cluster) 
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● Recursively splitting 
clusters produces a 
hierarchy that can be 
represented as a 
dendogram 

 Could also be represented 
as a Venn diagram of sets 
and subsets (without 
intersections) 

 Height of each node in the 
dendogram can be made 
proportional to the 
dissimilarity between its 
children 

26 



● Bottom-up approach 

● Simple algorithm 

 Requires a 
distance/similarity measure 

 Start by considering each 
instance to be a cluster 

 Find the two closest 
clusters and merge them 

 Continue merging until 
only one cluster is left 

 The record of mergings 
forms a hierarchical 
clustering structure – a 
binary dendogram 
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● Single-linkage 

 Minimum distance between the 
two clusters 

 Distance between the clusters 
closest two members 

 Can be sensitive to outliers 

● Complete-linkage 

 Maximum distance between 
the two clusters 

 Two clusters are considered 
close only if all instances in 
their union are relatively similar 

 Also sensitive to outliers 

 Seeks compact clusters 
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● Compromise between the 

extremes of minimum and 

maximum distance 

● Represent clusters by their 

centroid, and use distance 

between centroids – 

centroid linkage 

● Calculate average 

distance between each 

pair of members of the two 

clusters – average-linkage 
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● 50 examples of different creatures from zoo data 

30 Dendogram Polar Plot 



●Heuristic approach (COBWEB/CLASSIT) 

●Form a hierarchy of clusters incrementally 

●Start: 
●Tree consists of empty root node 

●Then: 
●Add instances one by one 

●Update tree appropriately at each stage 

●To update, find the right leaf for an instance 

●May involve restructuring the tree 

●Base update decisions on category utility 
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●Probabilistic perspective  
seek the most likely clusters given the data 

●Also: instance belongs to a particular cluster with 

a certain probability 
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A     43 
B     62 
B     64 
A     45 
A     42 
A     46 
A     45 
A     45 
 

B     62 
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A     51 
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B     62 
A     49 
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B     65 
A     46 

A     39 
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A     52 
B     63 
B     64 
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B     64 
A     48 
 

A     51 
A     48 
B     64 
A     42 
A     48 
A     41 

Data 

Model 

A=50, A =5, pA=0.6       B=65, B =2, pB=0.4 



●Assume: 
●We know there are k clusters 

●Learn the clusters  
●Determine their parameters 

●i.e. means and standard deviations 

●Performance criterion: 
●Probability of training data given the clusters 

●EM algorithm 
●Finds a local maximum of the likelihood 
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●More then two distributions: easy 

●Several attributes: easy—assuming independence 

●Correlated attributes: difficult 
●Joint model: bivariate normal distribution 

with a (symmetric) covariance matrix 

●n attributes: need to estimate n + n (n+1)/2 parameters 
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● Simplicity-first 
methodology can be 
applied to multi-instance 
learning with surprisingly 
good results 

● Two simple approaches, 
both using standard 
single-instance learners: 

 Manipulate the input to 
learning 

 Manipulate the output of 
learning 
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● Convert multi-instance problem into single-

instance one 

 Summarize the instances in a bag by computing 

mean, mode, minimum and maximum as new 

attributes 

 To classify a new bag the same process is used 
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● Learn a single-instance classifier 
directly from the original 
instances in each bag 

● To classify a new bag: 

 Decide on cluster for each 
instance in the bag 

 Aggregate the cluster 
predictions to produce a 
prediction for the bag as a 
whole 

 One approach: treat 
predictions as votes for the 
various clusters 

 A problem: bags can contain 
differing numbers of instances 
 give each instance a weight 
inversely proportional to the 
bag's size 
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●Can interpret clusters by using supervised 

learning 
●Post-processing step 

●Decrease dependence between attributes? 
●Pre-processing step 

●E.g. use principal component analysis 
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